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Abstract-The problem of solidification of an infinite liquid slab by linear convection cooling from the 
adjacent air is considered. It is assumed that at the initial moment the slab has a critical temperature and that 
on one side the air temperature has diurnal fluctuations of relatively small amplitude. The solution is found in 
the form of power series of small parameters. The first three terms of each series are obtained. This permits 
construction of a simple formula for the total solidification time. Evaluation of the accuracy of the solution 
based on bhe integral heat balance equation is suggested. Some particular cases of the problem are considered 
on the assumption that one side of the slab is insulated. One of these cases is the simplest Stefan problem which 

has an exact solution. Comparison with this solution is made. 

1. INTRODUCTION 

RECENTLY, the application of phase-change material 
(PCM) to problems of thermal energy storage has 
increased greatly. Thus simple analytic solutions of 
heat transfer problems with phase changes now have 

practical significance. 
To a great extent, the processes of heat transfer in 

PCM are characterized by the so-called Stefan number. 
A low value of the Stefan number is characteristic of a 
large class of practical problems in which latent heat of 
phasechangeplays the principal role. It is natural to use 
this feature to construct approximate analytical 
solutions to such problems. To achieve this aim, some 
authors either make speculations based on the results of 

the numerical solution (e.g. Cl]), or they begin by 
converting the governing equation to the new 
independent variables, which complicates these 
equations (e.g. [2,3]). Thorough discussion and review 
of the Stefan problem for small Stefan numbers is given 
in refs. [3-6]. 

It seems that in certain cases a solution can be 
obtained more simply by a direct expansion into a 
power series ofthe Stefan number and, perhaps, ofsome 
other small parameters. Furthermore, for the 
evaluation of the accuracy of these solutions, relatively 
simple and sufficiently reliable formulae can be 
obtained. 

We shall try to demonstrate such a technique for a 
rather general and, at the same time, not very 
complicated problem with applications to PCM. In this 
problem, external cooling (or heating) input has a 
periodic component (in time). The problem is simplified 
for methodological purposes, particularly with respect 
to the geometry and choice of initial conditions. 

2. FORMULATION OF THE PROBLEM 

We consider a solidification problem of an infinite 
liquid PCM slab whose initial temperature is a critical 

one. The slab is cooled from both sides by linear 
convective heat transfer from the adjacent fluid (air, in 
particular). Moreover, it is assumed that one face of the 
slab is exposed to solar radiation. (We put the origin of 
coordinate x = 0 at this boundary of the slab. Then the 
opposite boundary of the slab is x = d.) For simplicity, 
we assumed that the fluctuations of the solar influx and 
of the air temperature are sinusoidal, but the amplitude 
of the fluctuations is relatively small and therefore not 
sufficient to prevent solidification. 

It is easy to see that, in this problem, the solidification 
of each side of the slab is independent and therefore can 
be considered separately. For the exposed side, one has 
the following problem : 

wx, 4 a'T(x, t) 
-= 

at -gp 1 
d(t) > x > 0, 0 2 t > 0 I 

6(O) = 0, K z = = @-I,=,-K,); 
x 0 I 

K = pm 1 (1) 

TI,=, = T,,, 

(I=$() 
T,,(t) = T, + A sin Clt < T,, I 

It is assumed that c(, p, c, h, L, T,,, T,, A and Q are 
constant. The last inequality may be stronger than is 

necessary for the validity of the solution which will be 
obtained. It could be argued that T, < T,, would be 
sufficient for a solution, but T, is not known in advance. 
Note, that the linearized convective boundary 
condition at x = 0 is rather common. 

One can show that this approximately allows for 
diurnal variations of the direct and scattered solar 
radiation. It evidently also accounts for the influence of 
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NOMENCLATURE 

amplitude of external temperature 
fluctuations [“Cl 
solid PCM specific heat [kJ kg-’ “C-r] 
slab thickness [m] 
heat transfer (or film) coefficient at the 
exposed slab boundary 
[kJ m -*s-* oc-1l 
solid PCM conductivity 
[kJ m -l s-l “c-7 
PCM latent heat [kJ kg- ‘1 
heat flux [kJ m-zs-l] 
time [s] 
PCM temperature, (solid part) PC] 
PCM critical temperature [“Cl 
transfer air inlet temperature at the 
exposed side of the slab [“Cl 
constant part of T” [“Cl 
temperature at the boundary X = 0 [“Cl 
characteristic change of temperature, (solid 

part) [“Cl 

a thin stratum of foreign material which is often placed 
on the surfaces of the slab for technical reasons. 
Therefore, h and T0 should be considered as effective 
‘heat transfer coefficient’ and ‘outer media tempera- 
ture’, respectively. If necessary, one calculates h and 7& 
as functions of the solar influx, wind and air 
temperature and some other parameters. 

At t = 0 the phase-change interfaces meet and the 
slab becomes completely solid. Hence 

6(O) + s’(e) = a. (2) 

Hereafter, the primed letters refer to the solidified 
layer s’(t) < x < d which is developing at the opposite 
side of the slab. 

Note, that one ofthe objectives of this paper is to find 
an analytic solution for 0. 

The formulation of the problem can be supplemen- 
ted by the integral thermal energy (or heat) balance 
equation 

-~~K~i~;~dt+~~pc(r:.7)dx 

+pL6=0;8>t>O (3) 

which is a consequence of equations (1). Equation (3) 
will be employed for an estimation ofthe accuracy ofthe 
approximate solution for any t including t = 0. 

3. DIMENSIONALIZATION OF THE 

EQUATIONS 

For convenience of the analysis and solution of the 
problem we shall convert (lH3) to non-dimensional 
variables (letters with bars) by the following relations : 

x=X%, S=X& t=O?, T=T,,-ATi? (4) 

x coordinate, normal to the boundary of the slab [m] 
X characteristic linear scale [ml. 

Greek symbols 
‘2 solid PCM thermal diffusivity [m’ s- ‘1 

6 the thickness of the solidified layer [m] 

P solid PCM density [kg me31 
0 total solidification time [s] 

0 characteristic time scale [s] 

R angular earth rotation velocity [s-t I. 

Non-dimensional parameters 
a A/AT 

Bi Biot number, hd/K 

St Stefan number, cATJL 

p AT/AT 
V h/h’ 

w pLK!C2/ATh2. 

The primed letters refer to the solidified layer which is 
developing at the opposite side of the slab 6’ << x << d. 

We shall try to choose such values for X, 0 and AT 
which might be considered as characteristic scales. 

We shall denote 

a = A/AT, w = pLKQJh2A7: 

v = h/h’ 

p=AT’/AT;AT=T,,-T,, 
(3 

AT’ = r,,- T;, 
I 

assuming that h’ and Ti, are constant. 
Besides these non-dimensional parameters, we shall 

use conventional notation for Stefan and Biot numbers 
(St = cATJL; Bi = hd/K). 

Let us put 

X = K/h, 0 = pLK/h’AT = X’/aSt (6) 

then equations (lH3) become (the bars are omitted) 

Sc Wx, 4 a’T(x, t) 
at 

= -; d(c) > x > 0, ax2 

6(O) = 0, g _ = T],=,,-l+asinot t (7) 
x-0 

Tlx+=O, &=-ar 
ax x=6 ! 

~(z)+v~‘(T’) = Bi; z = O/O, z’ = /n/v2 (8) 

J:glxzodt+StJ: 
Tdx+S=O;rataO. (9) 

One can see from (7) that the body of the problem 
depends only upon the three non-dimensional 
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parameters St, a and o. The parameters Bi, v and p 
actually appear after solving the problem. 

For example, we shall consider a concrete case of a 
Glauber salt used as a slab of PCM. Then one can put 

tx = 0.84 x 10m6 m* s- ‘, 

p = 1.46 x lo3 kg rnm3, 

c = 1.76 kJ kg-’ “C-’ 

L = 2.51 x 10’ kJ kg- ‘, 

T,, = 32°C 

K=2.16x10-3kJm-‘s-‘“C-’ (10) 

h = 4 x lo-’ kJ mm2 s-i ‘Cl, d = 0.1 m, 

A = 5°C n = 10-4 s-r. 

The values for the thermophysical parameters are 
taken from Solomon [4]. The temperature data seem 
plausible for desert conditions in summer. 

From (5) and (6) we obtain 

a = 0.23, w = 2.25, X = 5.4 cm, 

0 = 6.25h(St = 0.15, Bi = 1.85). (11) 

The characteristic thickness and time obtained are in 
accordance with experiments (the order of magnitude 
of these values is right). Therefore, one can conclude 
that low values of St and a in (11) indicate the smallness 
of the terms which appear in (7) and (9) with these 
parameters. 

4. SOLUTION OF THE PROBLEM 

We seek a solution of (7) in the form of infinite power 
series in St and a : 

T = T,(x, t)+StT,(x, t)+aT,(x, t)+ ..’ 

6 = s,(t)+sts,(t)+a6,(t)+‘... 1 
(12) 

Substituting (12) into (7) one obtains the infinite 
succession of problems : 

- = T,I,=,-1 

(13) 

(14) 

* Note, that expressions (17) are valid even in the case when 
a is not small. But then 

s,(t) = [1+2t-2a(l --cos wt)/W]“Z- 1 

-_(), aT, a*T* 

ax* ax x=0 
= T,l,,,+sin wt 

62(O) = 0, 
aTI 

Tzlx=do + z _62 = 0, (15) 

jj,=-“T’ 
ax x=do' 

It should be noticed that the functions which refer to 

x = s(t) were expanded in the Taylor series in the 
vicinity of x = s,(t). 

Solving problems (13) (14) and (15) consecutively, 

one can find* 

6, = (1+2t)“*- 1, To = (6,-x)ci, (16) 

6, = -(l -cos wt)/o(l+2t)“* 
I 

T2 = ___ s’nwt [x+1-(1+2t)“2] 
(1+2t)“* (18) 

The validity of equations (16H18) can easily be 
proven by substituting them into (13)-(15). 

For an indirect estimate of the accuracy of the 

solution, we shall employ (9). Evidently, the 
substitution of the infinite series (12) into (9) must lead 
to an identity because (9) is a consequence of (7). 

However, the substitution of the truncated series (12) 

into (9) does not yield zero [because of the presence in 
(9) of the term with the factor St and with 6 as an upper 
limit of the integral], but simply an error at which 
equation (9) is not satisfied. 

If we confine ourselves to terms with first powers of St 

and a, and divide the result by 6,, we obtain the 
following expression for the relative error : 

E(t) = ; 
i 

do 
(StT, + aT,) dx. (19) 

0 0 

Then, using (16H18), an elementary transformation 
yields : 

-s 1 0 0 do 6 
T 

I 
dx = _ 6:(36; + 156, + 20) 

X(1 +6o)4 

-s 1 0 0 so 1 

6 
T, dx = ___ 

w + 60) 
6, sin cot (20) 

To find 0, we have to solve equation (8) for r. 
Substituting (12) into (8), we shall seek r in the same 
form of a power series : 

z = z,+St-z,+az,+.... (21) 
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Maintaining the accuracy of the solution, one can 
truncate series (21) after the first three terms. Equating 
the terms with like powers of St and a, one arrives at a 
quadratic equation for r,, and two linear algebraic 
equationsforz, andz,.Thesolutions oftheseequations 
are 

- ‘- (Bi+v+1)2 ( 

(l-L4(v%4~“]} [ (22) 

71 = -BC~,(70)+v~~,(70~/v2)1, 
( 

7 
2 

= P(1 + cos w70) 

o( 1 + 2~~)“~ 

Note, that in the expression for 7. the sign in front of 
the radical is specified by the trivial condition : 7. + 0 if 
Bi + O(d --, 0). 

5. SOME SIMPLER VARIANTS 

OF THE PROBLEM 

From (22) one can obtain formulae for the rather 
important case of a slab which is insulated at x = d. 

This can be done in two ways. We can either put h’ = 0, 
which means finding a limit of (22) for v + co ; or, what 
is somewhat simpler, to put Ti, = T,, and h’ + co which 
means finding a limit of (22) for v + 0, p + 0. Evidently, 
both ways give the same result 

z. = Bi(Bi+2)/2, r1 = Bf(Bi+3)/6(Bi+ 1) 

z2 = (1 -cos WT~)/O, 6,(7,) = Bi. I 
(23) 

In the case under consideration, it is convenient to 
write the characteristic scales in the form 

X = d/Bi, 0 = d2/uSt Bi2 (24) 

Then, multiplying (21) by the 0 term by term and 
using (23) after an elementary transformation, we 
obtain 

@=d’ L+s,Bi+3 

c ust 2 
-+;+ 

a( 1 - cos wzo) 

6 Bi+l 1 oBi2 ’ (25) 
In accordance with (19) and (20) in which 6,(7,) = Bi, 

the energetics evaluation is now 

~(0) = -[(St Bi)2(3BiZ + 15Bi +20)/24(Bi+4)4] 

+ aSt[Bi sin 1107~ + (Bi + 2) 

x (1 -cos w7,)/w(Bi + l)‘]/Z(Bi + 1). (26) 

* Other approximate expressions for 0 for both simplified 
variants (Bi -c cc and Bi = 0) when A = a = 0 have been 
obtained and expanded upon in the series of papers by 
Solomon (e.g. [l, 73). 

Concerning the solutions for hi and ZJi = 0, 1, 2) 
they remain in form of (16), (17) and (18). 

It is interesting to compare an approximate solution, 
obtained by the expansion into series, with the exact 
solution. For this, one can consider the simplest variant 
oftheproblem which has the well-knownexact solution 
found by Stefan. In this variant, the temperature at 
x = 0 is T, = const < T,,, (0 > t > 0). One can arrive 
at this variant by allowing h -+ cc (Bi -+ co) and putting 
a = 0, T, = T, in (25) and (26). 

We easily obtain* 

f&K& ;+;, ( > E(e) = - f St2. (27) 

The exact Stefan solution for 6 is 

s,,(t) = 21fi(&J. ei* erf I = St). (28) 

The transcendental equation in parentheses serves 
for finding 1. If St is small, 1 also has to be small. Using 
this we transform the equation to the form 

1 1 1 St 1 

zF=st 2 ( 
-+6-45St2+... . 

> 
(29) 

As a consequence ofthe first equation in (28) we have 
eex = d2/4u12. From this and (29) one can see that the 
expression for 0 in (27) coincides with the exact Stefan 
solution with the accuracy of the term at St to the first 
power. 

With the help of (29) we arrive at an evaluation of the 
relative error of the approximate solution. more 
rigorous than (27) : 

(30) 

One can see that this evaluation gives a result which 
is about three times smaller in absolute value than the 
energetics evaluation [second expression in (27)]. 

In conclusion, we shall consider a case where the heat 
flux which is absorbed by the exposed boundary of the 
slab is assumed given and constant. The opposite 
boundary is again insulated. Thus, only the boundary 
condition at x = 0 will be different from (1) : 

q,KdT 
ax x=o 

= const (e 2 t 2 0). (31) 

In this variant it is convenient to specify the 
characteristic scales by the relations 

X = d, 0 = d2/aSt, AT = qd/K. (32) 

It turns out that it would be easier to solve this 
variant from scratch. Unlike the above, we found a 
solution with accuracy of the second powers of St. The 
method of solving is the same. Therefore, we present 
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1. 

The superscripts show the largest power of the St in 2. 
the expansion. 

If we confine ourselves to the first power ofSt, the last 3. 
term of the expression for @‘) in (33) can serve as an 
estimate of the error of e(i). Then 

(34) 4. 

Due to (18) and (33) we have 
5. 

&(l)(e) z - ; St2. (35) 
6. 

One can see that in this case the direct evaluation of 
the error (34) gives a value nearly twice the absolute 

7. 

value of the energetics estimation (35). 
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SUR LE PROBLEME DU TRANSFERT THERMIQUE DANS LES MATERIAUX AVEC 
CHANGEMENT DE PHASE AUX FAIBLES NOMBRES DE STEFAN 

Resume-On considere le probltme de la solidification dune couche infinie liquide, par convection lintaire 
d’air adjacent. On suppose qu’a I’instant initial la couche a une temperature critique et que sur un tote la 
temperature de l’air a une fluctuation diurne d’amplitude relativement faible. La solution trouvee est sous 
la forme d’une strie puissance de petits parametres. Les trois premiers termes de chaque serie sont obtenus. 
Cela permet la construction dune formule simple pour le temps total de solidification. On evalue la 
precision de la solution baste sur l’equation du bilan thermique integral. Quelques cas particuliers du 
probleme sont consider&s pour une face de la couche isolte. L’un de ces cas est le probltme de Stefan, le 

plus simple, qui a une solution exacte. On fait la comparaison avec cette solution. 

WARMEUBERTRAGUNG IN MATERIALIEN MIT PHASENUBERGANG 
BE1 KLEINEN STEFAN-ZAHLEN 

Zusammenfassung-Es wird das Problem der Erstarrung einer unendlich grol3en Fliissigkeitsscheibe mittels 
linearer Konvektionskiihlung durch die angrenzende Luft behandelt. Es wird angenommen, daB sich die 
Scheibe zu Anfang auf der kritischen Temperatur befindet und daD die Lufttemperatur auf der einen 
Seite taglichen Schwankungen mit relativ kleiner Amplitude unterliegt. Die Liisung wird in Form von 
Reihenentwicklungen kleiner Parameter dargestellt. Die ersten drei Terme jeder Reihenentwicklung werden 
betrachtet. Dies gestattet die Konstruktion einer einfachen Formel fiir die gesamte Erstarrungszeit. Es 
wird eine Abschatzung der Genauigkeit der Lbsung, basierend auf der integralen Wlrmebilanzgleichung, 
aufgezeigt. Einige Sonderfalle des Problems werden fur die Abnahme einer einseitig wlrmegedammten 
Fliissigkeitsscheibe behandelt. Einer dieser Fllle ist das einfachste Stefan-Problem, wofiir eine exakte 

L&sung vorliegt. Ein Vergleich mit dieser Losung wurde vorgenommen. 
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K BOHPOCY 0 TEHJIOl-IEPEjJAYE C M3MEHEHklEM @A30BOrO COCTOIIHWSI B 
MATEPHAJIAX, MMEIOQMX MAlIbIE YMCJIA CTE@AHA 

AHHOTauHH-PaCCMOTpeHa 3anaga 0 3aTBepnesamiu pacnnasnemoro rmuecTBa coxpammuero +opMy 

6ecxoHeYHoi? I‘naCTMHbI II HMeIOIUeTO B Ha‘Ia."bHbIfi MOMeHT KpATAYecKyIO TeM"epaTypy. npennona- 

raeTcR, 9~0 IInacTma OxnaEflaeTcB c o6emx CTOPOH 38 CYeT KOHBCKI(IIA corIp5iKacaK)~erOcII c Heti 

Bosnyxa,npmeM c OLIHO~ ~3 CTOPOH TeimepaTypa ~TO~O Bosnyxa mfeeT CyTowble KOne6aHWI OTHOCH- 

TenbHO ManOk aMOnHTynb1. PemeHAe OTbIcKIIBaeTcI B +OpMC pflAOB "0 CTeneHIlM 6C3pa3MCpHbIX 

Manbrx napahieTpoB saflarsi. Ana Kaxnoro 113 c*enewbIx psnoB nonyveHbr nepBbre Tpn meaa. 3Toro 

J,OcTaTOYHO, 'iT06bI IIOcTpOliTb npOcTyI0 @OpMyny &"a BpCMeHll "OnHOrO 3aTBepi,eBaHIiS WIaCTI1HbI. 

IlpennomeHa MeTomiKa oqeHKs4 ~04H0cTB pemeam, ocHo*amafl Ha pacckfoTpeauki mTerpanbHor0 

ypaBHewin 6anaHca Tenna B macTme. PaccMoTpeHbr HeKoTopbIe YacTHbre cnyvaa 3anaw B npen- 

nonomewm STO oma 113 CTO~~H nnacTmb1 Tenno~3onupoBaHa. O~MH 83 3Tkix cnygaeB RBnseTcn 

npocretiruefi 3anayeB CTe@atia, kiMemuiefi Tomoe pemeaee, Koropoe cpaBmBaeTcn c nonygembrtd 

ilpH6JWKeHHbIM pelIIeH&ieM. 


