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Abstract—The problem of solidification of an infinite liquid slab by linear convection cooling from the
adjacent air is considered. It is assumed that at the initial moment the slab has a critical temperature and that
on one side the air temperature has diurnal fluctuations of relatively small amplitude. The solution is found in
the form of power series of small parameters. The first three terms of each series are obtained. This permits
construction of a simple formula for the totat solidification time. Evaluation of the accuracy of the solution
based on she integral heat balance equation is suggested. Some particular cases of the problem are considered
on the assumption that one side of the slab is insulated. One of these cases is the simplest Stefan problem which
has an exact solution. Comparison with this solution is made.

1. INTRODUCTION

RECENTLY, the application of phase-change material
(PCM) to problems of thermal energy storage has
increased greatly. Thus simple analytic solutions of
heat transfer problems with phase changes now have
practical significance.

To a great extent, the processes of heat transfer in
PCM are characterized by the so-called Stefan number.
A low value of the Stefan number is characteristic of a
large class of practical problems in which latent heat of
phase change plays the principal role. Itis natural to use
this feature to construct approximate analytical
solutions to such problems. To achieve this aim, some
authors either make speculations based on the results of
the numerical solution (e.g. [1]), or they begin by
converting the governing equation to the new
independent variables, which complicates these
equations (e.g. [2, 3]). Thorough discussion and review
of the Stefan problem for small Stefan numbers is given
in refs. [3-6].

It seems that in certain cases a solution can be
obtained more simply by a direct expansion into a
power series of the Stefan number and, perhaps, of some
other small parameters. Furthermore, for the
evaluation of the accuracy of these solutions, relatively
simple and sufficiently reliable formulae can be
obtained.

We shall try to demonstrate such a technique for a
rather general and, at the same time, not very
complicated problem with applicationsto PCM. In this
problem, external cooling (or heating) input has a
periodic component (in time). The problem is simplified
for methodological purposes, particularly with respect
to the geometry and choice of initial conditions.

2. FORMULATION OF THE PROBLEM

We consider a solidification problem of an infinite
liquid PCM slab whose initial temperature is a critical
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one. The slab is cooled from both sides by linear
convective heat transfer from the adjacent fluid (air, in
particular). Moreover, it is assumed that one face of the
slab is exposed to solar radiation. (We put the origin of
coordinate x = O at this boundary of the slab. Then the
opposite boundary of the slab is x = d.) For simplicity,
we assumed that the fluctuations of the solar influx and
of the air temperature are sinusoidal, but the amplitude
of the fluctuations is relatively small and therefore not
sufficient to prevent solidification.

Itis easy to see that, in this problem, the solidification
of each side of the slab is independent and therefore can
be considered separately. For the exposed side, one has
the following problem:

oT(x, t) . PT(x, 1)

ot ox?
f)>x>0, 0=2¢t>0
T
3(0) =0, K- =T =0~ Tin);
Xlx=0
K = pco n
. aT
T|x=6 = T;:n PL‘S =K—— N
ax x=8
. d
( )_E( )

To) = T+ AsinQ < T,

It is assumed that «, p, ¢, h, L, T, T,, A and Q are
constant. The last inequality may be stronger than is
necessary for the validity of the solution which will be
obtained. It could be argued that T, < T, would be
sufficient for a solution, but T, is not known in advance.
Note, that the linearized convective boundary
condition at x = 0is rather common.

One can show that this approximately allows for
diurnal variations of the direct and scattered solar
radiation. It evidently also accounts for the influence of
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NOMENCLATURE

A amplitude of external temperature x coordinate, normal to the boundary of the slab [m]
fluctuations [°C] X characteristic linear scale [m].

¢ solid PCM specific heat [k] kg~ ! °C™1]

d  slab thickness [m] Greek symbols

h  heat transfer (or film) coefficient at the o solid PCM thermal diffusivity [m* s ']
exposed slab boundary o  the thickness of the solidified layer [m]
[kJ m-2g ! oC‘l] P solid PCM dCl’lSity [kg m‘3]

K solid PCM conductivity 6  total solidification time [s]
[kJm~'s '°C~1] © characteristic time scale [s]

L PCM latent heat [kJ kg~ '] Q  angular earth rotation velocity [s™1].

q  heatflux [kIm™%s57!] . .

¢ time [s] Non-dimensional parameters

T PCM temperature, (solid part) [°C] a . A./ AT

T., PCM critical temperature [°C] Bi Biot number, hd/K

T, transfer air inlet temperature at the St Ste€an number, cAT/L
exposed side of the slab [°C] K AT,/ AT

T, constant part of T,, [°C] v A 2

T, temperature at the boundary X = 0 [°C] @  pLKQ/ATH.

AT characteristic change of temperature, (solid The primed letters refer to the solidified layer which is

part) [°C]

developing at the opposite side of the slab ¢ « x « d.

a thin stratum of foreign material which is often placed
on the surfaces of the slab for technical reasons.
Therefore, h and T, should be considered as effective
‘heat transfer coefficient’ and ‘outer media tempera-
ture’, respectively. If necessary, one calculates k and T,
as functions of the solar influx, wind and air
temperature and some other parameters.

At t = 0 the phase-change interfaces meet and the
slab becomes completely solid. Hence

8(0)+5'(0) = d. @)

Hereafter, the primed letters refer to the solidified
layer &'(t) < x < d which is developing at the opposite
side of the slab.

Note, that one of the objectives of this paper is to find
an analytic solution for 6.

The formulation of the problem can be supplemen-
ted by the integral thermal energy (or heat) balance

equation
t aT s
- ae|
0 x=0 o
)

K—
0x
which is a consequence of equations (1). Equation (3)
will be employed for an estimation of the accuracy of the
approximate solution for any ¢ including t = 6.

pc(T::r— T) dx

+pLld=0,02t20

3. DIMENSIONALIZATION OF THE
EQUATIONS

For convenience of the analysis and solution of the
problem we shall convert (1}{3) to non-dimensional
variables (letters with bars) by the following relations:
8=X5, t=0t T=T,—ATT. 4

x = XX,

We shall try to choose such values for X, 8 and AT,
which might be considered as characteristic scales.
We shall denote

a= A/AT, o= pLKQ/h?AT,

v =Wk
5
u=AT/AT;AT =T, —T,
AT =T, —Ti,

assuming that 4’ and T}, are constant.

Besides these non-dimensional parameters, we shall
use conventional notation for Stefan and Biot numbers
(St = cAT/L; Bi = hd/K).

Let us put

X = K/h, © = pLK/h*AT = X?/aSt (6)

then equations (1)+3) become (the bars are omitted)

oT(x,t) &*T(x,t) 3\
St = ; O(t 0
at a5z o> x>0,
t2t>0
oT
50)=0, | =T _o—t+asinewrt {7
ax x=0
. oT
Tlep=0, §=—""
|x—6 0x s
1) +v¥(T')=Bi; 1 =0/0, 1 = ut/v? 8)
raT o
2 S| Tdx46=0;12120. (9
0 0x|ioo 0

One can see from (7) that the body of the problem
depends only upon the three non-dimensional



Heat transfer in phase-change materials

parameters St, @ and . The parameters Bi, v and p
actually appear after solving the problem.

For example, we shall consider a concrete case of a
Glauber salt used as a slab of PCM. Then one can put

a=084x10"°m?>s 1,
p=146x10°kgm 3,
c=176kI kg~'°C™?
L=251x10*kJ kg™ !,

T, = 32°C,

K=216x10"3kIm 1st°C™!
h=4x10"2kIJm™2s"1°C™1,
A=5C Q=10*s"1

(10)

d=01m,

The values for the thermophysical parameters are
taken from Solomon [4]. The temperature data seem
plausible for desert conditions in summer.

From (5) and (6) we obtain

a=023 =225 X=354cm,

© = 6.25"(St = 0.15, Bi = 1.85). (11)

The characteristic thickness and time obtained are in
accordance with experiments (the order of magnitude
of these values is right). Therefore, one can conclude
that low values of St and a in (11) indicate the smallness
of the terms which appear in (7) and (9) with these
parameters.

4. SOLUTION OF THE PROBLEM

We seek a solution of (7) in the form of infinite power
series in St and a:
T = To(x, t)+ St Ty (x, )+ aTy(x, t) + - (12)
6 = Oo()+ Std,(t)+ad,(t)+ ---.

Substituting (12) into (7) one obtains the infinite
succession of problems :

PTooo O T 1
5x2 - ax X=0_ 0lx=0
oT (13)
3(0) =0, Tyly=s,=0 50=_a_°
X X =do
8T, 0T, 0T, 1 N
ot ox? ox -0 tlx=0
oT,
510)=0, Tilyesot—==| 6:=0, ¢ (19
ax x=dg
. oT,
5. =%
! 0X |x=s,

* Note, that expressions (17) are valid even in the case when
a is not small. But then

8olt) = [142t—2a(1 —cos wt)/w]¥? -1
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0*T, 0T, . )
8x22 =4 a—xzx=0=Tz|x=o+5ma’t
0T
030 =0, Dlees+ 52 5:=0, 1 (19)
X x=2d¢g
. aT,
d,=— =2 .
z 0X | =40

It should be noticed that the functions which refer to
x = &(t) were expanded in the Taylor series in the
vicinity of x = J,(t).

Solving problems (13), (14) and (15) consecutively,
one can find*

8o = (1+20)12—1, T, = (8o—x)5

3300 Jo
Sp=— 22 1+
! 2(1+5O)< T3

5(3)'50 X+ 1 *e x2 . x3
T, =— Op) — — g —
1 <1 +3,) 3 +(6090) 3 g 6

(16)

a7

8, = —(1—cos wt)/w(l +21)'/?

sin wt

2= e 10420

(18)

1 —cos wt |
BT

The validity of equations (16)18) can easily be
proven by substituting them into (13)-(15).

For an indirect estimate of the accuracy of the
solution, we shall employ (9). Evidently, the
substitution of the infinite series (12) into (9) must lead
to an identity because (9) is a consequence of (7).

However, the substitution of the truncated series (12)
into (9) does not yield zero [because of the presence in
(9) of the term with the factor St and with  as an upper
limit of the integral], but simply an error at which
equation (9) is not satisfied.

If we confine ourselves to terms with first powers of St
and @, and divide the result by 8, we obtain the
following expression for the relative error:

&t) = gf f " (SIT, +aTy) dx. (19)
(4]

0

Then, using (16)(18), an elementary transformation
yields:

1 do 2 2 A
T, dx=_50(360+1550+20)
do Jo 24(1484)*
! JOTd ! d, si 20
— X =
5l 2 21 <0y o Sin wt > {20)
do+2
— (11— .
+w(1+6a)2( coswt):l

To find 6, we have to solve equation (8) for t.
Substituting (12) into (8), we shall seek 7 in the same
form of a power series :

T=10+St 1, +ar,+.... (21)
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Maintaining the accuracy of the solution, one can
truncate series (21) after the first three terms. Equating
the terms with like powers of St and a, one arrives at a
quadratic equation for 7, and two linear algebraic
equationsfor 7, and 7,. The solutions of these equations
are

1 =1 Bty D [14p )
T 2 T 1ok 2
([, _U=m?—pm\"
K Bivvr 1y
s (22)

Ty = — B84 (zo)+vudy (tou/v)],
_ B(1+cos wtg)
B = [(1+259) 12+ (v + 2p7) 2171,

Note, that in the expression for 7, the sign in front of
the radical is specified by the trivial condition: 7, — 0if
Bi = 0(d — 0).

5. SOME SIMPLER VARIANTS
OF THE PROBLEM

From (22) one can obtain formulae for the rather
important case of a slab which is insulated at x = d.
This can be done in two ways. We can either put i’ = 0,
which means finding a limit of (22} for v — o0 ; or, what
issomewhat simpler,toput Tj, = T,,and k" — oo which
means finding a limit of (22) for v — 0, 4 — 0. Evidently,
both ways give the same result

7o = Bi(Bi+2)/2, 1, = B?(Bi+3)/6(Bi+ 1)}
7, = (1 —cos wtp)/w, &y(1p) = Bi. (23)

In the case under consideration, it is convenient to

write the characteristic scales in the form
X =d/Bi, © = d*/aSt Bi* (24)

Then, multiplying (21) by the © term by term and
using (23) after an elementary transformation, we
obtain

a[1
o =;s7[5 *
(25

Inaccordance with (19)and (20)in which d4(7,) = B,
the energetics evaluation is now

&(6) = —[(St Bi)*(3Bi* + 15Bi +20)/24(Bi+ 4)*]
+aSt[Bi sin wty+(Bi+2)
x (1 —cos wto)/w(Bi+1)2]/2(Bi+1).

St Bi+3 1  a(l—cos wtp)
wBi?

6 Bi+1  Bi

(26)

* Other approximate expressions for  for both simplified
variants (Bi < oo and Bi = 0) when A = a =0 have been
obtained and expanded upon in the series of papers by
Solomon (e.g. [1, 7]).
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Concerning the solutions for §; and T,(i = 0, 1, 2),
they remain in form of (16), (17) and (18).

Itisinteresting to compare an approximate solution,
obtained by the expansion into series, with the exact
solution. For this, one can consider the simplest variant
of the problem which has the well-known exact solution
found by Stefan. In this variant, the temperature at
x=0is T, =const < T, (6 = ¢t = 0). One can arrive
at this variant by allowing h — oo (Bi — o0) and putting
a=0,T, =T, in (25) and (26).

We easily obtain*

1 St 1
<§ + E)’ e0) = — g St2. 27

2
P
aSt

The exact Stefan solution for § is

belt) = 20 Jut(Jrier erf i = S1).  (28)

The transcendental equation in parentheses serves
for finding A. If St is small, A also has to be small. Using
this we transform the equation to the form

11 1+St 13t2+
427 St\2 ' 6 45 ’

As aconsequence of the first equation in (28), we have
0., = d*/4a)?. From this and (29) one can see that the
expression for @ in (27) coincides with the exact Stefan
solution with the accuracy of the term at St to the first
power.

With the help of (29) we arrive at an evaluation of the
relative error of the approximate solution more
rigorous than (27):

(29)

0..—0 2

& x——S8t%

0., 45

(30)

One can see that this evaluation gives a result which
is about three times smaller in absolute value than the
energetics evaluation [second expression in (27)].

In conclusion, we shall consider a case where the heat
flux which is absorbed by the exposed boundary of the
slab is assumed given and constant. The opposite
boundary is again insulated. Thus, only the boundary
condition at x = 0 will be different from (1) :

T
q=K?

=const (0 =t = 0).
ax x=0

(31)
In this variant it is convenient to specify the
characteristic scales by the relations
X=d, ©=d*aSt, AT =gqd/K 32)
It turns out that it would be easier to solve this
variant from scratch. Unlike the above, we found a
solution with accuracy of the second powers of St. The
method of solving is the same. Therefore, we present
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here only the final result

\
£2 2
S=t—— ——t) 8
t 2St+(3 )
x2
T=t—x+(-2——t2)(1—tSt)St
d? 1 7 . 33
02 = —|{ 1+ = St+ - S
(e 3sregse)
() ~ B,
12 y

The superscripts show the largest power of the St in
the expansion.

If we confine ourselves to the first power of St, the last
term of the expression for 8% in (33) can serve as an
estimate of the error of ). Then

oD _ g2 7
Due to (18) and (33) we have
2
V(O ~ — 3 St (35)

One can see that in this case the direct evaluation of
the error (34) gives a value nearly twice the absolute
value of the energetics estimation (35).
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SUR LE PROBLEME DU TRANSFERT THERMIQUE DANS LES MATERIAUX AVEC
CHANGEMENT DE PHASE AUX FAIBLES NOMBRES DE STEFAN

Résumé—On considére le probléme de la solidification d’une couche infinie liquide, par convection linéaire
d’air adjacent. On suppose qu’a I'instant initial la couche a une température critique et que sur un coté la
température de I'air a une fluctuation diurne d’amplitude relativement faible. La solution trouvée est sous
la forme d’une série puissance de petits paramétres. Les trois premiers termes de chaque série sont obtenus.
Cela permet la construction d’une formule simple pour le temps total de solidification. On évalue la
précision de la solution basée sur 'équation du bilan thermique intégral. Quelques cas particuliers du
probléme sont considérés pour une face de la couche isolée. L’un de ces cas est le probléme de Stefan, le
plus simple, qui a une solution exacte. On fait la comparaison avec cette solution.

WARMEUBERTRAGUNG IN MATERIALIEN MIT PHASENUBERGANG
BEI KLEINEN STEFAN-ZAHLEN

Zusammenfassung—Es wird das Problem der Erstarrung einer unendlich groBen Fliissigkeitsscheibe mittels
linearer Konvektionskiihlung durch die angrenzende Luft behandelt. Es wird angenommen, daB sich die
Scheibe zu Anfang auf der kritischen Temperatur befindet und daB die Lufttemperatur auf der einen
Seite tdglichen Schwankungen mit relativ kleiner Amplitude unterliegt. Die Losung wird in Form von
Reihenentwicklungen kleiner Parameter dargestellt. Die ersten drei Terme jeder Reihenentwicklung werden
betrachtet. Dies gestattet die Konstruktion einer einfachen Formel fir die gesamte Erstarrungszeit. Es
wird eine Abschéitzung der Genauigkeit der Losung, basierend auf der integralen Wirmebilanzgleichung,
aufgezeigt. Einige Sonderfille des Problems werden fiir die Abnahme einer einseitig wirmegeddmmten
Fliissigkeitsscheibe behandelt. Einer dieser Fille ist das einfachste Stefan-Problem, woflir eine exakte
Losung vorliegt. Ein Vergleich mit dieser Lésung wurde vorgenommen.
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K BOITPOCY O TEILIONEPEJAYE C U3BMEHEHUEM ®A30BOTO COCTOSIHUA B
MATEPHUAJIAX, UMEKOIINX MAIJIBIE UHUCJIA CTE®AHA

AnsoTanna—PaccMOTpeHa 3a4a4a O 3aTBEpAEBAHUY PACIIABIEHHOTO BEUIECTBA COXPAHAIOILEro GopMy
6eCKOHEYHOM MJIACTHHBI ¥ MMEKIIETO B HavaJbHBbIE MOMEHT KPHTHYECKyro Temnepatypy. Ilpeanona-
raeTcs, YTO IIACTHHA OXJaxaaeTcs ¢ obeux CTOPOH 3a cYeT KOHBEKLHH CONPHKACAKOLIErOCH C HeH
BO34yXa, IPUYEM C OJHOM! U3 CTOPOH TeMIEpaTypa 3TOTO BO3[yXa MMEET CYTOYHblE KOJ1e6aHUs OTHOCH-
TeNbHO Majoi ammiHTyasl. PelneHne orbickuBaeTcs B (opMe psuoB no CreneHsAM Oe3pa3MepHbIX
MAJIBIX TIApaMEeTPOB 3agaqu. JJIs KaXOOTo U3 CTENEeHHBIX PANOB MOJyYeHbl NepBbie TPH 4JIEHA. DTOrO
JIOCTATOYHO, YTOOBI OCTPOUTH NPOCTYH GOPMYNy AN BPEMEHH MOJIHOTO 3aTBEPACBAHHSA IIACTHHBL.
TpeniokeHna MeTOHMKA OLEHKH TOYHOCTH PpellleHHsl, OCHOBAHHAS HAa PacCMOTPEHHM HHTErPAJILHOIO
ypaBHeHHs Oananca Temna B IUIACTHHE. PacCMOTpEHBI HEKOTOpblE 4ACTHBIE Cly4ad 3d1a4M B Ipea-
TIOJI0XKEHHH YTO OJAHA M3 CTOPOH IJIACTHHBI Telulon3onuposaHa. OOMH M3 JTHX CJIy4aeB ABJISETCH
npocreieii 3agaveli Credana, UMeEOmEH TOYHOE DEILIEHHE, KOTOPOE CPABHHBAETCS € MOIYy4CHHBIM
npUOIKEHHBIM PELICHHEM.



